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Larmor rotation of charged particles in a strong magnetic field leads to 
anisotropy of trans ort 
tivity (Hall P 

coefficients. The effect of anlsotropy in conduc- 
effect on a steady flow ‘of the Hartmann type” was taken Into 

account for weakly ionized gas in (1 and 23, for completely Ionized gas in 
133 and for Partially ionized gas in [4]. The effect of anisotropy in con- 
ductivity on unsteady flow has to our knowledge been Investigated only for 
a weakly ionized gas [5 and 61. Finally, the solution of the problem with 
consideration of anlsotropy In viscosity (when the cyclotron frequency of 
rotation for ions is not small in comparison with their “collision” fre- 
quency) was obtained only in the steady case for a completely ionfzed gas 
171. 

On the basis of the system of equations obtained in [83 an unsteady plane- 
parallel flow of a part~ally,,ion~zed gas is examined below, taking into con- 
sideration the Rail effect, slippage of ions with respect to neutral par- 
ticles, and anisotropy of viscosity. The medium In motion Is presumed to be 
incompressible, the magnetic Reynolds number Is assumed to be small. Ther- 
mal diffusion terms in Ohm’s law and the temperature dependence of transport 
coefficients are neglected here. By means of Laplace transform an exact 
solution of the problem is obtained for the case of arbitrary time depend- 
ence of pressure gradient, and also for particular cases of pulsating and of 
constant pressure gradients. 

1, The same model of a.partially ionized gas moving in a strong external 

magnetic field, as was adopted in 183, is utilized here. Additional assump- 

tions with respect to incompressibility of the medium (p = COnSt), constancy 

of its degree of ionization (s = const), and smallness of magnetic Reynolds 

number are introduced; then, if the effect of temperature on transport coef- 

ficlents is neglected, they can be considered as constant quantities. Finally, 

neglecting the thermal diffusion effect we will have the following system of 

equations describing the motion of the medium to be examined ux: 
l1.l) 

div u = 0, dlv Vi = 0, p[$+(uV)u]=-Vp-divafj xB 



WI to 
B jxB-Gs ( 

(1.1) 
j+ vp) + 2 (1 - s)~ oi’i~eTo [B x (j x B) + ‘Ont * 

+ i&VP xB-y& (S div x - div ni) x Bl = ~0 (E + u x B) 

B rot - = j, 
8B 

PO 
rot E = - z , div B = 0, div e,E = pe 

Here n and n, are viscosity tensors of the mixture and the Ions, res- 

pectively 

arm = - Tl(cWorm - T$l)Wlrm - $2)Wzrm + rJ(S)JJ77 + +)J&rm 

(1.2) 
Jlirm = - Tl$c)Wcrm - qiwWlrm - Q(2)Wsrm + Q3'W,'" + Q(4)W;m 

Expressions for viscosity coefficients @) and Qck' (k = 0, 1, 2,.3, 4), 
and also for tensors Wknnare given in [S]. The velocity of l'sllppage" of 

ions with respect to nrltral particles Is given by BKpression 

mz-$ -I- (1 - S) j x B - ‘l(&“’ c;'p + s div n- divni (1.3) 
e ea I 

Other notations are Identical with those used In (83, namely: u Is the 

aversge mass velocity, p Is the pressure, B is thevectorofmagnetlc induction, 

j lsthe vector of c&rent densiw, B Is the vector of electric field tension, Z 

Is the charge number, UJ, and U, are cyclotron frequencies of electrons 

and ions, clo and 90 are magnetic and electric constants, p, Is the space 

charge, e,,= const Is the conductivity, Z,p J Is the effective collision 

frequency of particles of the IJ. and B kind. 

The system of equations written above Is slmpllfled considerably when the 

concrete problem of flow In a flat channel with the hlght % Is examined 

in the presence of homogeneous external fields $ parallel to z and 4 

perpendicular to z . The natural assumption that the velocity depends only 

on the transverse coordinate z and time t , and the possibility to neg- 

lect Induced fields by virtue of the smallness of the magnetic Reynolds nrm- 

ber, lead to a linearization of the original system of equations. 

Taking into account that u, = jz s O,B, E & = CO& and introducing 

complex velocity u(,,t), density of electrical current J(at), Induced mag- 

netic field x(a,t), external electric field cpo, eddy electric field cp(n,t) 

and also the complex pressure gradient $(t) according to the following 

equations 

v = us - iuy, J = jx - ijv, x = po-’ (I?, - iBy) (1.4) 

‘pO = Eos - iE II, = P, - iP, (1.5) 
P, = - ap 1 ajj 
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we reduce the presented problem to solving a linear equation of the second 

order for u(s,t) 

p ; - [(@ fiq'4') (1 + ig 
S 

+ Boauo~v = 
[ 
I- .?.- 

1 +zs 
where 

q - (?-p + iTp’) 

E (8 + i%?fo) 
1 II, + 

g-$]g+ 
(1.6) 

iBO~OEcp0 

g = (1 + 8 + iO,TJ1 (1.7, 

Viscosity coefficients entering Into (1.6) have the form 

q(a) + i9'4' = 11 
(0) +4/p (o,z&y qa + i ~/,oizie(q(0) -q,) 

1 + '/e (qqv 

(1 + i‘y.9 op$) qi (0) 
q,(a) + iq$4' rz2 

Ze& 
(1.8) 

1 +4h (oiq)a 
(0.z - 
1 

9 > 

Here Zc Is the charge and mi Is the mass of the Ion; expressions for 

viscosity coefficients of the entire mixture q(O), of Ions ‘Q(O) and of ‘Iso- 

lated” neutral partlcales qa In the case when the magnetic field 1s equal 

to zero are given in C81. -ri e Is related to the time between every possible 

kind of collision between Ions; dimensionless parameters UJ,T,~ character- 

izes the anlsotropy of viscosity coefficients. 

It Is interesting to note that with growing otrifl the coefficient of 

viscosity q(2) monotonously decreases from the value q(c) at OiZ*e. = 0,, 
asymptotically approaching q,-, for large values of Oi ‘Ci 8. 

Analogously, qis) falls off from qic), approaching 0 at o&e>l. 

A different behavior Is shown by ~(4) and Q(4): Increasing from 0 at 

cJIT10 PO, they reach a maximum at UJ~ ~,e = 1.5 

(max [qt4) / (q” - q,)l = max ~+)lq&O) = 0.5) 

and then decrease monotonously to zero with Increasing UJ,T,~ . 

After solution of Equation (1.6) wlth zero Initial and boundary condl- 

tlons, the complex current density J Is determined from Formula 

1,i-L B0 
{ 
j-& [ (qi@) + i7ji@)) - s (r)(s) + iv(a))] ‘& + 

3 Bi,%,v + l& (8 + i%z,) $ - iBao~,) (1.9) 

The Induced electric and magnetic fields are given In the first approxl- 

matlon by Equations 

(1.10) 



with corresponding initial and boundary conditions. From the projection of 

the equation of motion on r-axis and from the generalized form of Ohm's law, 

aPI@ J% and pe = @E,j a2 CCUI also be determined. 

2, Introducing U,, a, al U,,, PU,,~ / a 
for u, I, t, t and q~,,respectlvely, we 

dimensionless form 

and B,U,, as scalar quantities 

rewrite Equation (1.6) in the 

(2.1) 

In the equality (2.1) copplex nondimensional Reynolds numbers I)* and 

R It, and the parameter of magnetic interaction N* are separated out 

N*=N% 

where 
R(k) _ 'OsP UoaP -- 

,,(W ’ 
R.(k) =- 

‘L 
p (k = 2.4) 

Applying Laplace transformation to (2.1) 

F (z, f.I) = if (z, t) e-fit dt 
0 

and taking Into account the Initial condition 

0 (2, 0) = 0 

we obtain the following equation for representing v(z, p): 

+J" + (8 + N*)V = o(B) 

where 

&=&(I+&%)-&&% 
i 

D (IV = [i -&%(bf ] io,z,) Y (g) + iN* f 

Taking Intoaccount the boundary condition 

v(*i,p)= 0 

we find the solution for Equation (2.7) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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The Rieman-Mellln transformation theorem gives 

btim 

Utilizing the convolution theorem, 

the form t 

coshz I/Ra*(Pm- 
- 

cash J/R&*@ + N*) I ept @ (*'I*) 

Equation (2.12) can be rewritten in 

d/3& (2.13) 

The inside Integral in (2.13) is easily found with the aid of the residue 

theorem, and the general solution at arbitrary pressure gradients s(t) 
finally takes the fo1.m 

u (2, 0 = 2f {[l-&E (6 + io.r,)]$ (t - z) + 
fi 

+ iN*qo} exp (.- N*z) s (-j)k y exp +!!$_ dr 

k=o 

(2.14) 

where 

k 2..&2$-1 k 2 (k = 0,1, 2, . .) (2.15) 

3. We will now examine the case of pulsating pressure gradients. Let v 

be the nondimensional cyclic frequency of the forcing pressure gradient. In 

(2.14) we.wrlte ‘II, (t) = q. COS Yt. Carrying out the Integration and summing 

the trigonometric series entering into the stationary state, a solution is 

obtained in the form 

iv (2, t) = % 
(N*2+ 9) Aa 

I- 

f (N* Sin Yt - v Cos vt) (aa7J1 corhr]. Sin zr2 COS r2 - c09bzrl ha r1 COS zr2 sin rc) I f 

+ iTo (1 -“i clg 
\ * * > 

+ 2&* esp (- iV*t) {[I - & E (A+ io,to)] X 

(h,2+ R&*N*)cos 21, 
X $0 ; (-1pp exp 

- hk't 

h,[(h," -j- R&*N*)" + RE*W] -+ 
k=o 

%* 

+ ii\-*qo $J ( -l)k+l 
cos 3kk - hk’Lt 

I;=0 
A, @ka + R,*N*) exp R,* (3.1) 



where 
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A = -@rlCos2r2 + ~*r,sin*r, 

'-1,2 = ~‘/&~*(~N** + v* f N*) (3.3) 

Series which enter into (3.1) represent a transition state which can be 

realized In the form of decaying harmonic oscillations with time, when the 

driving force does not change the frequency of these oscillations but only 

Influences their amplitude. The other components give the stationary state 

which in particular contains forced oscillations with the frequency v. 

It is interesting to note that anisotropy in conductivity permits the 

attainment of maximum amplitudes of forced oscillations through the selec- 

tion of frequency v . 

For the sake of simplicity we will demonstrate this for the case of lnvis- 
cid medium where solution (3.1) acquires the form 

(N* cos vt f v sin vt) + 

-&s E (6 i- io,rs)] + $s} exp (- N*t) (3.4) 

For the purpose of further simplification we will consider the gas to be 
weakly ionized (s < 1) and the external electric field to be absent (cpO= 0). 
Then, for the longitudinal velocity of the stationary state (qO is a real 
number) we obtain Expression 

where 
Vov (a2 - B s + v2) %a (aa + P2 + v2) 

fs = (as - Pa + @)a + 4a2ps (3.6) 

Examining the amplitude vfl” f fia for an extremum, we find that the 
maximum Is attained at 

v2=a2(1/s4+4e2-1) 
( 

P Wea 
e = a = I + 20i5ao,?,, 1 

(3.8) 

From (3.8) It follows that the indicated maximum can occur only for 

e > 61/s- 2 z 0.486 (3.9) 

Which in the present case represents the anisotropy in conductivity 

In the Isotropic case, however, 
has the form 

when 0,7,,‘< 1 and e < 1, the amplitude 

VT+_= VNT+ va (3.10) 

I.e. it appears as a monotonously decreasing function of frequency v . 
It Is also noted that the presence of parameter UJ,T~ In the denominator 
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of Expression (3.8) limits from above the magnitude of magnetic field for 
which (3.9) 1s correct 

1 
OiZia < -= 

2 JfvEi-2 
(3.11) 

I.e. for sufflzlently strong magnetic fields the effect of Ion "slippage" 
with respect to neutral particles masks the effect due to the presence of 
exiernal frequency. Analogously, for transverse (Hall) stationary velocity 
% we will have 

where 
% O= -)/fa2+ fa2cos vt - tan-1 ( -K :, 
2av 

fs = N0(,2 _ p2 + V2)2+4U2p2 9 f4 = Lb (=2 _a;2y12~;24a2p!a 

Here the maximum In amplitude is reached at 

which 1s meaningful for 
~2 = a2 (s2 - 1) 

h"> 1, Via< II2 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

4. Let us examine the case of constant pressure gradients. Assuming that 

v=o, we obtain from (3.1) the solution of the problem for the case of 

constant pressure gradients $ = to 

corh zM6* 
v (5 0 = $ (1 -&T) + 

+ 2Rs*A exp (- N*t) i (-‘) 
k+l cos d, - I.$ 

k=O A, 6k2 + MS*‘) e=p-p--t (4.1) 

Ms*~ = Ra*N* = EM*aMi*2 Mi*2 (1 + 

Complextiartmann numbers @ and j$' are 

1 1 1 
*=m =7-t 

(M(*‘) 

where 

._k- E) - M*a & %I-’ 
l-s 

given by JQuatlons 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The first term in (4.1) corresponds to the stationary state of the flow 

under investigation. This state represents harmonic oscillations along *he 

coordinate because of the joint influence of viscosity and anlsotropy in 
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conductivity. 

The decaying harmonic oscillation with time represents the transition 

state which corresponds to the second term In (4.1); here the cyclic fre- 

quency of these oscillations has the form 

6s 

(1 - s) [(I + N* + (qo)*l 
X 

1 
-- 

R(a) (4.6) 
We will examine now some specific cases of the solution whlcn was found. 

1. In the absence of anlsotropy In conductivity (m,%<i) we will have 
for the longitudinal velocity component UX the ordinary Iiarklann stationary 
state and a transition state aperiodic with time. Here the transverse velo- 
city component ~~~0, ifp,= E,,,,zO. 

If there Is anlsotropy in conductivity but anlsotropy In viscosity Is 
abskt, then it Is appropriate to wrlteoiZtC<l and 0.7. 41. In the solu- 
tlon. In addition, considering the gas to be weakly lon!l.$d (s<1) and the 
external electrical field to be absent (cpo= 0), we will obtain the expres- 
sion for velocity which coincides with the one derived in C63. 

We note also the anlsotropy in conductivity leads to a transition state 

which Is periodic with respect to time and has the cyclic frequency 

Q=N 
08Z0 

’ + (o8T0,a,, (4.7) 

of 

of 

In the case of a nonviscous medium for u~T~~<I (absence of "slippage" 

ions) we obtain from (3.4) 

> 1 
-I- icp,, [I - exp (- N*l)l (4.8) 

Assuming that $, = P,, and 'p,, = @we have for velocities l&O and 4" 

the stationary state 

0 p, ux =N’ 
P, w,zo uyoz -_ 
N 1+Zs 

From this It can be seen that with Increasing degree of ionization s , 

there Is a decreasing of u Xo at the expense of corresponding Increase In 

conductivity oe. There Is also a more effective decrease In Hall velocity 

u,O which Is related to an Increase in electrical current and consequently 

to an increase in retarding action of the ponderomotive force. 

3. Consideration of effects of anlsotropy of viscosity and of"sllppage" 

of ions with respect to neutral particles leads to a considerable compllca- 

tlon of the flow pattern. In particular, as Is evident from (4.6), the pre- 

sence anlsotropy In viscosity leads to a spectrum of frequencies for the 

transitional state Instead of one frequency (4.7) for ~&I<l. For. in- 

stance, for completely Ionized gas (e = 1) 
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We also note that the stationary state for fully Ionized gas which 

obtained from (4.1) coincides with results from [7]. Finally, taking 

account “slippage” of ions In Equations (4.9) gives 

2 (1 - s)2 qtiacocto I P a,t0 
If& ’ 

llyO = - _fL ~ 
N I+& 

(4.10) 

can be 

into 

(4.11) 

From this It Is evident that “slippage” of ions does not have an inf’lu- 

ence on the Hall velocity of the stationary state, but for a given s # 1 

it Increases the longitudinal component of velocity. 
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