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Larmor rotation of charged particles in a strong magnetic field leads to
anisotropy of transport coefficients. The effect of anisotropy in conduc-
tivity (Hall effect) on a steady flow "of the Hartmann type" was taken into
account for weakly ionized gas in [1 and 2], for completely lonized gas in
[3] and for partially ionized gas in [4]. The effect of anisotropy in con-
ductivity on unsteady flow has to our knowledge been investigated only for
a weakly ionized gas [5 and 6]. Finally, the solution of the problem with
consideration of anisotropy in viscosity (when the cyclotron frequency of
rotation for ions is not small in conparison with their "collision” fre-
€u§ncy) was obtained only in the steady case for a completely ionfzed gas
T1.

On the basis of the system of equations obtained in [8] an unsteady plane-
parallel flow of a partially ionized gas is examined below, taking into con~-
sideration the Hall effect, "slippage' of ions with respect to neutral par-
ticles, and anisotropy of viscosity. The medium in motion 1s presumed to be
incompressible, the magnetlc Reynolds number is assumed to be small. Ther-
mal diffusion terms in Ohm's law and the temperature dependence of transport
coefficients are neglected here., By means of Laplace transform an exact
solution of the problem is obtained for the case of arbitrary time depend-
ence of pressure gradient, and also for particular cases of pulsating and of
constant pressure gradients,

1. The same model of a partially ionized gas moving in a strong external
magnetic field, as was adopted in [8], is utilized here. Additional assump-
tions with respect to incompressibility of the medium (p = const), constancy
of 1its degree of lonization (g = const), and smallness of magnetic Reynolds
number are introduced; then, if the effect of temperature on transport coef-
ficients is neglected, they can be considered as constant quantities. Finally,
neglecting the thermal diffusion effect we will have the following system of
equations describing the motion of the medium to be examined [8]: 1 1)

divu = 0, divV; =0, p[glzl—i-(uv)u]:—Vp—divn—{—ij
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Here n and m, are viscosity tensors of the mlxture and the lons, res-

pectively
urm _ TI(O)Worm —_ n(l)erm _ Tl(z)Wzrm + Tl(s)Warm + T](4)W4rm
i (1.2)
T = — O — O — g @W, O 4 0w

Expressions for viscosity coefficients N® and ny® (k = 0,1, 2,.3, 4),
and also for tensors Wi " are given in [8]. The velocity of "slippage" of
ions with respect to neutral particles is given by Expression

27,
\ _—“1[
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+@l—9jx B_Zl=29 S’w+sdwn—dlvm] 1.3)
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Other notations are identical with those used in [8], namely: w 1s the
averege mass velocity, p is the pressure, B is the vector of magnetic induction,
J 1s the vector of current density, B is the vector of electric field tension, Z
is the charge number, w, and w, are cyclotron frequencles of electrons
and lons, u, and ¢, are magnetic and electric constants, p, is the space
charge, o,= const 1s the conductivity, -ra,;—l is the effective collision
frequency of particles of the o and g kind.

The system of equations written above 1s simplified considerably when the
concrete problem of flow in a flat channel with the hight 2@ 1s examined
in the presence of homogeneous external fields B parallel to > and 5
perpendicular to g . The natural assumption that the veloclty depends only
on the transverse coordinate 2 and time ¢ , and the possibllity to neg-
lect induced fields by virtue of the smallness of the magnetic Reynolds nivm-
ber, lead to a linearization of the original system of equations.

Taking into account that u, = j, = 0, B, = B, = const and introducing
complex velocity v(g,t), density of electrical current J{z¢), induced mag-
netic field y(z,t), external electric field g,, eddy electric fleld o(»,t)
and also the complex pressure gradient y(¢) according to the following
equations

v=u— iy, J=]— iy %=t (Bx — iBy) (1.4)
Qo = Egx — iEyy, ¢ = E. — iE,, Y =P, — iPy (1.5)
P, = — op/ oz, P,= —0dp/oy
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we reduce the presented problem to solving a linear equation of the second
order for v(z,t)

a .
o5 — [(® +inw) ( S E) — (i 4 ing) 2= 8]0 +
. (1.6)
+ Bogky = |1 — 7 56 + i0,7) [ + iByoskey
where
8 =21 — 5)? 0i73,0,7,, E= (140 + iwety)? (1.7
Viscosity coefficients entering into (1.6) have the form
. (0) 4 45 (0,702, + i s 0,70 (NO) —n )
) N i a it a
1'(2 + ln(“) = 1 + 4/0 (mi’rie)ﬂ (1 8)
, (A + i %s 0;7,0) ,©® ZeB, '
i@ 4 i) = 1T %, (0,50 (wi = Tm, )

Here Ze 1is the charge and m, 1s the mass of the lon; expressions for
viscosity coefficients of the entire mixture m®, of ions 1;( and of "iso-
lated” neutral particales Ne 1n the case when the magnetic field 1s equal
to zero are given in [8]., 1,8 1s related to the time between every possible
kind of collision between ions; dimenslonless parameters w,r7,8 character-
izes the anisotropy of viscosity coefficients.

It is Interesting to note that with growing @;T;0 the coefficient of
viscosity 72} monotonously decreases from the value 1(® at ;1,6 =0,,
asymptotically approaching 1), for large values of w;T; 0.

Aralogously, 1%3) falls off from ng”, approaching 0 at ;70> 1.

A different behavior 1is shown by 14 and 7! increasing from 0 at
w;7,8 = 0, they reach a maximum at w, 7,6 = 1.5

(max [n® / (n° — ng)] = max n,@/7©@ = 0.5)

and then decrease monotonously to zero with lncreasing w;7,6 .

After solution of Equation (1.6} with zero initial and boundary condi-
tions, the complex current density J 1s determined from Formula

. 8 . 9?
=i (0 + ) G +

+ Byogw + 5 Z B + iogTy) Y — lBooocpo} 1.9)

The induced electric and magnetic fields are glven in the flrst approxi-
mation by Equations

ox _ o _ ;90
5. =, o gy = L5~ (1.10)
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with corresponding initial and boundary conditions. From the projection of
the equation of motion on g-axis and from the generalized form of Ohm's law,
opl éz, E

z and p, = g,0F,/ @z can also be determined
2.

Introducing U,, a, a/ U, onz/a and B,U,, as scalar quantities
for v, g, t, ¥

and ¢, respectively, we rewrite Equation (1.6) 1in the
dimensionless form

dv

0 [t 125 8) — e 8] S e

=[1— 127 @ + i0) [ + Ve,

(2.1)
In the equality (2.1) complex nondimenslonal Reynolds numbers R* and
}7,* , and the parameter of magnetic interaction ¥ are separated out
_1_ —_— e 1 __1 1 N* N 2
R* — R® + L g@ R*— (m +i (o ’ =Nt (2.2)
where
k) __ Uoap ) __ Uoap
R™ = nt R = rli(k) (k=2.4) (2-3)
— Bo’Goa Bo2
N= o0 = SBm 8= Y2 Ron = posoal (2-4)

Applying Laplace transformation to (2.1)

Fa,p) =1z 0ena

(2.5)
0
and taking into account the initial condition

v(z2,0) =0

(2.6)
we obtain the following equation for representing V (z, B)
— gV + @+ NV =DE) 2.7)
where
1 1 1 8
R—=R—(1+ = 8~ mr =3t (2.8)
DB =[1—2pt 0+ iom)| ¥ @) + iV P (2.9)
Taking into &ccount the boundary condition
V(t1,p) =0 (2.10)
we find the solution for Equation (2,7)

_ D@ [, = VERFB+NY ]
Vi@ B =gpas [ ! B B 1)

(2.11)



828 E.G. Sakhnovskii

The Rieman-Mellin transformation theorem gives

v(z, ) = —1—b+§m D@) [y _ s VRFB+ N
D=5 ) BFN S

h-ico

}eﬂ‘ g (2.12)

Utilizing the convolution theorem, Equation (2.12) can be rewritten in
the form

t
v (z, t) = W1 “m E (6 + zmeto)] t — 1)+

b+ico

. cosh z | Re* (B + N¥) ey
N* .
+i %}‘“‘b:\m[i — VWTBT’N_*)] T T (2.13)

The inside integral in (2.13) is easily found with the aid of the residue
theorem, and the general solution at arbitrary pressure gradients y(z)
finally takes the form

!

v(z,t)=2g{[ 1+Z §(5+zm,ro)] t— 1) +

, b A — .2
+ lN*(po} exp (— N*1) 3 (—1)* cos; X exp R"*t dt (2.14)
= k 5
where
2k 41
Ay = ; ) (k=0,1,2,. ) (2.15)

3. We wlll now examine the case of pulsating pressure gradients. Let v
be the nondlmensional cyclic frequency of the forcing pressure gradient. In
(2.14) we.write VP () = P, cos V. Carrylng out the integration and summing
the trigonometric serles entering into the stationary state, a solution 1s
obtalned in the form

v (z, 1) = E®+ w)ero)][(N* cos vt +

. N,
(V*2 - v2) A2 1+ZS
<+ v sin vt) (A% — cosh zr| cosh 7'y COS ZT'y COS I'y — sinh 27y sinh 7'y Sin 2Ty Sin 7y) +

-~ (N*sin vt — v cos v{) (sishzrjcosh 7y Sin 21y COS 7'y — coshzry sinh Ty €OS 2T, 8in )} +

coshz |/ R *NN* 7 )
+ i (1 — __——mgﬁsm_ ) + 2Rs* exp (— N*0) {1 — 77 80+ iwnwo) | x
- (M2 4 Rg*N*) cos zh,, — A2t
X o 2 (“”A ' l’ll(A:)._J_ RoN*) + Rg*vi] exp R +
k=0
ns o ' cos zh A2
NG 3] () e oxp R,f } (3.1)

k=0
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where
A = coshr cos?r, - sink?r sin®r, 3.2)

rie = VILRFA(VN® T v £ N¥) (3.3)
Series which enter into (3.1) represent a transition state which can be
reallzed in the form of decaying harmonic oscillations with time, when the
driving force does not change tihe frequency of these osclillations but only
influences their amplitude. The other components give the stationary state
which 1n particular contalns forced oscillatlions with the frequency v.

It is interesting to note that anlsotropy in conductivity permits the
attainment of maximum amplitudes of forced oscillations through the selec-
tion of frequency v .

For the sake of simplicity we will demonstrate this for the case of invis-
¢id medium where solution (3.1) acquires the form

vz, t) = N,;p_'*_ ¥ [1 —1 —{Z—sZs EMO+ ime'r.)] (N* cos vt + v sin vt) +

* Z
+ iy — {N?ﬂi- 5 [1 -7 _: 7.5 (0 + ime'r.)] + iq>o} exp (— N*t) (3.4)

For the purpose of further simplification we willl conslder the gas to be
weakly ionized (s<€ 1) and the external electric field to be absent {g,= O).
Then, for the longitudinal veloclty of the statlonary state (wo 1s a real
number) we obtain Expression

W(e ) = VT oo (v — w2 (3.5)
where
Vel B4 v _ b @ty 5.6
fl. - (a2 — B? + v2)2 + 4(1232 1] f2 - (a2 — Bﬂ .+_ v?)ﬂ + 40282 M
N (1 + 20;7;,0,7,,) _ NogT,, 3.7)
O = AT Zot,0,0, P F (0,500 B U F 20yt F @
Examining the amplitude ¥ fif + f2¥ for an extremum, we find that the
maximum 1s attailned at
— TR} _ ] B Teq )
V2_a2(V54+482_.1) (e—a‘:m (3.8)
From (3.8) it follows that the indicated maximum can occur only for
e>V V5_2~0486 (3.9)

Which in the present case represents the anisotropy in conductivity

In the 1sotropic case, however, when ©,%,,<€1 and &<<€1, the amplitude
has the form

VIR =y

VT @10

i.e. it appears as a monotonously decreasing function of frequency v .
It is also noted that the presence of parameter w, T, in the denominator
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of Expression (3.8) 1limits from above the magnitude of magnetic field for
which (3.9) is correct

1
P e — 3.11
© “<2VV5-—2 3.4

i.e. for sufficlently strong magnetic fields the effect of ion "slippage"
with respect to neutral particles masks the effect due to the presence of
external frequency. Analogously, for transverse (Hall) stationary velocity
u,” we will have

uy° = — Vfaz -+ f42 cos (‘Vt — tan~! _;_q) (3.12)
where ¢
2av a? 4 B2 — 2
fs = Bo (a2 — P24~ v 2 4u2B3 ° fo= Bo (@ — BT - v&)? 4 4aip? 3.13)
Here the maximum in amplitude is reached at
v2=q? (g2 — 1) (3.14)
which is meaningful for
e>1, ©;7;, < Y4 (3.15)

4§, Let us examine the case of constant pressure gradients. Assuming that
v = 0 , we obtain from (3.1) the solution of the problem for the case of
constant pressure gradlents y = y,

A cosh 2 M o *
v(z, t) = m(i—m—m-f;)‘*‘

®  (—1)**1cos 2, — M

+ 2Rs*A exp (— V*1) k§0 Ay (A2 + M*?) exp Rg* ¢ (5-1)
Here
A——[i Zs ’g'(b—{—imt)]\p + iN* (4.2)
=1z eTo) |Wo Do .
6 -

MB*Z == RB*N* = EM*zM{*zl:M{*z (1 + 1?_3;8 §) - M*Q 1__3 g] ' (4'3)

Complex Hartmann numbers N* and #M* are given by Equations
1 1 1 1

M‘S = R*N = (M(z))2 + i (M(“))’ ’
1 1 1 S|
M2 = R*N = (M‘_(z))a +i (Mi(4))2 (44)
where
k) nr Go \2
M® =V RPN = B (F‘T) (4.5)

- ',
M® =VRON=Ba(2\" *=24%
™
The first term in (4.1) corresponds to the stationary state of the flow
under investigatlion. This state represents harmonic osclllatlions along *he
coordinate because of the joint influence of viscosity and anisotropy in
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conductivity.

The decaying harmonic oscillation with time represents the transition
state which corresponds to the second term in (4.1); here the cyclic fre-
quency of these oscillations has the form

Nogto 1 8s
_= ee—————— 2 + X
(1 + 6)® + (0,T0)? { R@W (1 —s5)[(1 + 6)? + (0g%0)?]

[(1 +9) ( @ —s—}:im)— ero<71(§,———s—1%,->]‘} (4.6)

We will examine now some specific cases of the solution whicn was found,

1. In the absence of anisotropy in conductivity (®,%<€1) we will have
for the longltudinal velocity component «, the ordinary Hartmann statlonary
state and a transition state aperiodic with time. Here the transverse velo-
city component u, = 0, if P = By,

2. If there is anisotropy in conductivity but anisotropy in viscosity is
absent, then it is appropriate to write @10 €1 and o;v,,<€1. 1in the solu-
tion. In addition, considering the gas to be weakly ionized (s<€1) and the
external electrical fleld to be absent (g,= 0), we will obtain the expres-
sion for velocity which coincides with the one derived in [6].

Q

We note also the anisotropy in conductivity leads to a transition state
which 1s periodic with respect to time and has the cyclic frequency
w_To

_ e
Q=Nproos (4.7)

In the case of a nonviscous medium for @T;<€1 (absence of slippage”
of ions) we obtain from (3.4%)

v(z t) = [ (1 + ‘1-}-23) + cho] [1 — exp (— N*1)] (4.8)

Assuming that Yo = P,. and @, = 0,we have for velocities Uy’ and u,°
of the statlionary state

P P W, To
© e X o__ __“x Te
Uz = N Uy Ni+Zs (4.9)

From this 1t can be seen that with increasing degree of ionization g,
there 1s a decreasing of 1y at the expense of corresponding increase in
conductivity g,. There 1s also a more effective decrease in Hall velocity
u,° which 1is related to an increase in electrical current and consequently
to an increase in retarding action of the ponderomotive force.

3. Consideration of effects of anisotropy of viscosity and of "slippage"
of ions with respect to neutral particles leads to a considerable complica-
tion of the flow pattern. In particular, as is evident from (4.6), the pre-
sence anlsotropy in viscosity leads to a spectrum of frequencies for the
transitional state instead of one frequency (4.7) for ®;7i0<€1. For in-
stance, for completely lonized gas (s = 1)
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No,t

. elei i
Q= T lomp Ag? T (4.10)

We also note that the stationary state for fully lonized gas which can be
obtained from (4.1) coincides with results from [7]. Finally, taking into
account "slippage" of ilons in Equations (4.9) gives

ue =% [1 + 20 —sp ‘”:'Tia‘%%] 1o =  Lx @l
N 1+ Zs Y N 1+1Zs
From this 1t 1s evident that "slippage” of ions does not have an influ-
ence on the Hall velocity of the stationary state, but for a given g # 1

it increases the longitudinal component of velocity.

(4.11)
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